
2.1.1 Thermodynamic Probability and Entropy

In 1854, Rudolf J. E. Clausius introduced the entropy (S) as a parameter of

phenomenological thermodynamics, and defined it as the heat, added to a system

in a reversible way in relation to the temperature (see Eq. 3.10). Later, in 1894,

Ludwig Boltzmann used this parameter in the framework of statistical thermody-

namics. In these circumstances, the entropy, and in context to this, the second

principle of thermodynamics becomes more imaginable. Entropy appears as a kind

of measure of disorder, or as a degree of random distribution, i.e., of missing order.

The correlation between order and probability and, as will be explained later –

information – is of great importance for the understanding of the principles of

biological organization.

Let us start with the assumption that the entropy is a measure indicating the

degree of randomization of a given distribution. We will consider a system of

maximal entropy as a system in maximal disorder. Furthermore, let us demand that

the entropy be an extensive parameter. Therefore, like volume, or mass, but in

contrast to the intensive parameters such as for example temperature or density, the

entropies S1 and S2 of two systems can be added, if these systems come together:

S1 þ S2 ¼ S (2.1)

How can we now define a parameter, which indicates the degree of randomiza-

tion or, on the contrary, a degree of disorder? What does order of organization

mean? Of course, our daily experience shows that an ordered system spontaneously

transforms into a disordered one, but not vice versa. This, actually, is the conse-

quence of the second principle of thermodynamics.

Let us consider a very simple structure, just the distribution of four distinguish-

able spheres on two compartments of a box (Fig. 2.1). Let each of these spheres,

independently of the three others, just by chance fall into one or the other compart-

ment of the box. All of the 11 possibilities of the distribution, as indicated in

Fig. 2.1, therefore, have the same degree of probability, because the probability

of each sphere individually, to fall into compartment 1 or into compartment 2 is

equal. Summarizing the patterns of distribution shows that there is only one way to

Fig. 2.1 All possibilities of the statistical distribution of four distinguishable spheres in two

compartments of a box
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realize the distributions 0:4 and 4:0. In contrast, there are four ways to realize the

distributions 3:1 and 1:3, and, finally, six ways for equal distribution: 2:2.

Let us now ignore the fact that the spheres are distinguishable. Let us simply ask:

How large is the probability that just by stochastic distributions one of the relations

4:0, 3:1, 2:2, 1:3, or 0:4 occur? Apparently, the probability of any kind of distribu-

tion will be larger, if it can be realized by a larger number of ways. The distribution

mode 2:2, for example, is 6 times more likely, than the distribution 4:0, or 0:4. The

number of ways which lead to the realization of a definite situation, in fact, seems to

be a measure of the probability of the occurrence of it. We will designate this

number of ways by the parameterW which we will call thermodynamic probability.
The amount of W can be at least 1 and at maximum 1, in contrast to the

mathematical probability (P), which we will use in Sect. 2.1.2, and which ranges

between 0 and 1.

Now, we come to the following sequence of conclusions: IfW really is a measure

of the probability of getting a definite distribution, and if an increase of the degree

of order is the most uncertain result of a stochastic distribution and finally, if the

entropy (S) is a parameter, indicating the degree of disorder – than S should be a

function ofW. If two situations with relative probabilitiesW1 andW2 are connected

together, then the probability of this combined situation results from the product

(W1·W2). Using Eq. 2.1, this means:

S ¼ f ðWÞ ¼ S1 þ S2 ¼ f ðW1Þ þ f ðW2Þ ¼ f ðW1 �W2Þ (2.2)

This demand is met by the logarithmic function:

lnAþ lnB ¼ lnðA � BÞ (2.3)

Hence entropy is proportional to the logarithm of W:

S ¼ k lnW (2.4)

This is the Boltzmann equation of entropy. Boltzmann’s constant k was defined

as a universal constant later by Max Planck. It must have the same unit of

measurement as entropy, and is as follows:

k ¼ 1:380658 � 10�23J K�1 ¼ 8:6174 � 10�5 eVK�1

This explanation was just based on the simplest experiment where four spheres

were distributed randomly over two compartments. One step toward serious ther-

modynamics can be taken, considering for example the compartments of this box as

molecules of a system, and the spheres, as quanta of energy, distributed among

them. This complication, of course, means a transition of handling with larger

numbers. If the number of elements and classes are increased, W cannot be
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evaluated just by simple trial. It is possible to calculate this value using the

following equation:

W ¼ n!

n1! � n2! � n3! � . . . � nm! (2.5)

where n is the total number of all elements in the system (in case of Fig. 2.1 – the

total number of spheres: n ¼ 4); ni (for i ¼ 1. . .m) is the number of elements in

each class of state (this means, the number n1 in compartment 1 and n2 in

compartment 2); and m is the number of classes of state (namely: number of

compartments in the box).

2.1.2 Information and Entropy

In 1948, C. E. Shannon introduced a parameter which in technical information

theory has been proved as a useful measure of information content of a message.

The information (I) of a message depends on the effort required to guess it by a

highly systematic system of questions. Hence, information is some sort of degree of

the actuality of a message.

It is not difficult to guess the result of the toss of a coin, since there are only two

possibilities of equal probability. To guess a certain card in a full deck of playing

cards is much more difficult. In this case, a much greater uncertainty factor has to be

taken into account. Using a more systematic approach, a large number of yes-no

questions have to be answered. Hence, the information content of a particular

playing card is higher than that of a tossed coin. Should a deck consist of cards

which are all the same, and should this be known to the challenged person, guessing

will not make sense at all. The information content of each of these cards is zero.

The probability by which possibilities are turned into reality, consequently, seems

to become a measure of information.

In contrast to thermodynamics, in the information theory the mathematical term

of probability (P) is used which is defined as follows:

P ¼ number of favorable cases

greatest possible number of cases

On average, coins tossed a 100 times will land with heads up in 50 instances.

Hence, the probability of heads facing up may be expressed by:

P ¼ 50

100
¼ 1

2
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Conversely, the probability of throwing a “six” with some dice is only P ¼ 1/6,

whereas the probability of throwing one of the three even numbers would be higher:

P ¼ 3/6 ¼ 1/2.

Whereas the thermodynamic probability (W) is always larger than 1, (cf.

Sect. 2.1.1), the value of the mathematical probability lies between 0 and 1 (0 �
P � 1). In this context, P ¼ 0 means an impossibility, while P ¼ 1 expresses

absolute certainty.

The logical conclusions which led to the derivation of the Boltzmann equation

(cf. Sect. 2.1.1) are the same as those on which the Shannon relation is based.

Information (I) is a function of mathematical probability (P):

I ¼ f ðPÞ

The condition for the function f again, is satisfied by the logarithmic function,

since here too, the multiplication rule for the calculation of probabilities must be

valid (cf. Eq. 2.3). To obtain positive values of information, considering that P � 1,

the negative value of the logarithmic function must be used. The information of a

single event therefore is:

I ¼ �K lnP (2.6)

This is the Shannon equation of information theory. The unit of I is determined

by the unit of the always positive factor K. The bit (binary digit) is most commonly

used. It expresses the number of binary yes-no decisions that are needed to

determine a given message. For example, the one side of the coin can be guessed

by one single decision, its information value, consequently, is 1 bit. Five binary

decisions will be sufficient to guess a card from a deck. Hence, the information

value of one card is 5 bits. The factor K ¼ 1/ln2 ¼ 1.443 must be used to calculate l
in bits. In the information theory the logarithm to the base 2 (log2) is occasionally

used:

I ¼ �1:443 lnP ¼ �log2P ðI in bitÞ (2.7)

A message usually consists of elements like symbols, words, or other structures

of a set defined in advance. This concerns not only the letters of a word or the words

in a written text, but the same approach can be applied also for various cases of

biological information storage and transfer. So, for example, the information

content of a DNA molecule is coded by the sequence of nucleic acids; the informa-

tion content of a protein is given by their amino acids. In a similar way the

information content of time-dependent structures like nervous signals can be

evaluated too. In this case discrete patterns of neural spike trains are considered

as elements of the message.

Assuming for example that a mammalian DNA molecule consists of 15,000

pairs of nucleotides and the four possible types of nucleoside bases have an equal

probability of occurrence, then the information content of each single nucleotide
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will, consequently, have a value of 2 bits. The information capacity of this DNA

molecule therefore amounts to 30,000 bits.

In fact, however, in a DNA molecule the probability of the occurrence is not

equal for all nucleotides. In this case, the information content of the whole message

can be expressed by the sum of the evaluated probabilities (Pi) of the single

elements (i) by the following equation:

I ¼ �K
X
i

Pi lnPi (2.8)

Estimates of information capacity in the whole genome of an organism in this

way range up to about 1010 bit. The amount of actually stored information is even

lower, if the redundance in the storage of genetic information which is required for

the protection of the information is taken into account.

It seems important to emphasize that the Shannon Information (I) as evaluated
here, is the so-called syntactic information. It allows for example important

conclusions about the maximum storage capacity of a DNA molecule of the

whole genome. This Shannon Information (I), however, has nothing to do with

the “information content” in the everyday use of this word, the so-called semantic
information.

The difference between the syntactic and the semantic character of information

can be illustrated best by the following example: A book, consisting just of

stochastically jumbled letters, or even words according to Eq. 2.8 have a larger

amount of syntactic information than such with a meaningful text, because in the

stochastic sequence the probability of the occurrence of elements is lower than in an

organized one. If Pi becomes smaller, its negative logarithm, and therefore I gets
larger. Knowing some characters of a reasonable word, for example, the rest of

them can usually easily be guessed – the probabilities of their occurrence therefore

become larger, its content of syntactic information diminishes. If the same number

of characters is mixed stochastically, guessing is more complicated – information is

larger.

Transferred to the biological situation: The Shannon, i.e., the syntactic informa-

tion of a polynucleotide with an arbitrary sequence is larger than that of a DNAwith

the same molecular length. In contrary to the syntactic information, the semantic
information of a reasonable book, of course, is much larger than a book containing

stochastically selected characters or even words. The same refers to the biological

DNA in contrast to a polynucleotide with no biological function.

Does this mean that it is impossible to quantify biologically important informa-

tion? Does it mean that the information concept is not applicable to biological

systems at all? In fact, the semantic aspects of communication are irrelevant to most

engineering problems and therefore not included in the definition of Shannon’s I.
Despite many attempts, quantification of semantic information has not yet been

achieved.

Nevertheless, even the use of the syntactic information properties of biomolecules

and nervous processes has proved to be a useful tool in modern molecular biology.
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The enormous increase of the amount of data on the primary structure of biological

macromolecules, especially DNA sequences, as well as data of neurophysiological

recordings nowadays required mathematical methods for their evaluation, compari-

son, and storage. For this, bioinformatics was developed as a special discipline, based

on these considerations.

Formally, the Boltzmann’s constant (k) can be used in the Shannon equation

(Eq. 2.6). In this case information is obtained formally in entropy units (JK�1).
Therefore the term “entropy” as Shannon-Entropy in bioinformatics was frequently

used in the sense of information. This formal interconnection of Shannon’s defini-

tion of information with Boltzmann’s entropy triggered off a discussion about the

relation between these two parameters.

The starting point for this discussion was the second principle of thermodynam-

ics, predicting that isolated systems spontaneously try to reach a state of maximum

disorder. The growth and the existence of a living system on the contrary is possible

only by decreasing or at least by the conservation of entropy. Erwin Schr€odinger
(1944) made the frequently quoted statement: “The living system feeds on negative

entropy.” This is the reason, why sometimes the term “negentropy” was used.

The interconnection of information with entropy in terms of thermodynamics

may be illustrated best by a thought experiment conceived by James Clerk Maxwell

in 1881 and still discussed today (Fig. 2.2). Maxwell proposed a room, which is

connected with another by an opening. This opening can be closed by means of a

slide. Both rooms are filled with a gas which is, in the beginning, in equilibrium, for

example of equal pressure and temperature. An intelligent creature, later called

“Maxwell’s demon,” is able to handle the slide between the two rooms with ease.

This “demon” can observe accurately the direction and the velocity of the

molecules in his room. Velocity and direction of these particles in the beginning

are statistically distributed. If a particle in the upper room flies accidentally toward

the opening, the demon opens the slide to let the particle pass. As a result of such

sorting the pressure in the lower room would rise.

The demon could also take another approach. For example, he could separate

fast from slow particles. In this case, a difference in the temperature between the

two rooms would occur. In both cases, the entropy of the whole system would be

reduced and energy might be generated by an appropriate turbine. The result would

be a “perpetuum mobile,” a perpetual motion machine of the second order, as it

would contradict the second principle of thermodynamics.

This apparent contradiction subsequently was the subject of a large number of

scientific and philosophical publications. The problem was finally resolved by the

following consideration: The “demon” requires information to carry out the sorting.

He collects this information by “watching” the molecules. In order to “see” he

needs light. For this, the demon in Fig. 2.2 symbolically carries a lit candle. Yet, a

body will only be able to emit light in a state of nonequilibrium relative to its

environment. This, however, contradicts the equilibrium condition at the beginning

of the experiment. The same would apply to any other approach to acquisition of

information. This resolves the apparent contradiction to the second law of

thermodynamics.
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Why do we discuss this thought experiment here, if it is clear that it will not work

as a perpetual moving machine? What has this to do with biophysics? In fact,

independent of this discussion about the virtual violation of the second law of

thermodynamics, Maxwell’s demon demands particular interest in biophysics

because of its analogy to various functions of living systems. The living cell, too,

reduces its entropy at the expense of its environment, using information processing.

Yet, in the latter instance it is not the energy of statistical fluctuations, which is used

in this case. The biological system selects such molecules from its environment,

which are rich in free Gibbs energy of formation and correspondingly, with a low

content of entropy. It uses this energy and extrudes molecules with lower free

energy and larger entropy. The basic information for this process of selection, in

other words, the “software” for this process, is stored in the structure information of

the proteins, which are responsible for the recognition of these molecules, and

eventually for their metabolism. These proteins get this sort of semantic informa-

tion during the process of synthesis via the RNA, from the DNA of the genome.

This example again raises the question of the relation between semantic and

syntactic information: what is the threshold value of information that is required to

control the processes of living systems? Or translated into the language of modern

computer science: how large must the simplest software for this sort of a biological

Fig. 2.2 Maxwell’s demon
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Maxwell demon be? What is the threshold information that carries out not only the

metabolic function of the primordial organism but additionally its replication? How

did the first accumulation of information in a molecule occur? Purely accidental

combination of monomers to build their first functional macromolecule must be

ruled out. The probability for this occasion is too low by far. Today, so-called

probiotic evolution is assumed, i.e., chemical selection of developing polymers

even before the stage of the biopolymer (see also Sect. 5.2.5).

Further Reading

Shannon and Weaver 1962; Bioinformatics in molecular biology: Kauffman 1993;

Strait and Dewey 1996; Yockey 2005; Lesk 2002; Maxwell’s demon: Leff and Rex

1990.

2.1.3 Biological Structures: General Aspects

In the previous section we introduced expressions like order, structure, and orga-
nization and discussed them in context with entropy and information, as well as

with the statements of the second law of thermodynamics. This touches on a set of

questions which are of central interest in biophysics and which will be mentioned in

many sections of this textbook. Therefore it is necessary at this point, to explain

some basic definitions and principal ideas.

What, really, is a structure? To the biologist, the term “structure,” usually is

related to the macroscopically or microscopically visible organization of an organ-

ism. This means, for example, the structure of an animal skeleton, structure of a

cell, of a mitochondrion, etc. The term “molecular structure” already lies outside

the limits of this view. It refers to a certain arrangement of atoms, without defined

contours, which can be described just by means of wave mechanics. The same

applies for the concentration profile of an electrical double layer (Fig. 2.43), and

particularly for so-called “time structures,” namely special time courses, like

oscillations of a biological system (Figs. 5.3 and 5.16), like the shape of an

electrocardiogram (Fig. 3.38), or like the sonogram of a bat’s cry (Fig. 4.19).

This means that the definition of the term “structure,” which is used in biophysics

has to be broader than that of the morphologists and cytologists. It must include

these structures as well as those of metabolic networks, ecosystems, or others.

The best, and generalized definition of this term is given by the set theory of

mathematics. Therefore: a system is an aggregate of elements with certain
interrelations between them. The totality of these interrelations is called the struc-
ture of the system. This definition does not prescribe at all, what kind of elements,

and what kind of interrelations these are. It is applicable to all kinds of systems

including biological systems and structures. In biophysics, we are interested espe-

cially in dynamic systems, i.e., in such systems, the interrelations between their

elements are interactions. In contrast to this, in static systems the elements have no

interaction at all, but are just interrelated by formal relations. Examples for static
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systems, are the system of natural numbers in mathematics, or the system of animal

species or of plants in biology.

The elements of a metabolic network are the metabolites, and the interrelations

between them, i.e., their interactions, are the steps of biochemical reactions.

Correspondingly, an ecosystem is to be considered an interaction of individuals

and populations depending on abiotic conditions.

Biological macromolecules can be considered as systems too. In this case, the

following levels or organization occur depending on what will be assumed as their

elements.

– Primary structure – linear sequence of monomers (¼ elements) in the linear

molecular chain (¼ system). For example, a polypeptide chain: . . .-serine-
alanine-lysine-arginine-.

– Secondary structure – positioning in space of monomers (¼ elements) in a part

of the molecule (¼ system) relative to each other. For example, the a-helix, or
the b-sheet structure of an amino acid sequence in a protein.

– Tertiary structure – position in space of molecular regions of homogeneous

secondary structures (¼ elements) in a molecule (¼ system). For example,

intramolecular coordination of the position of several helical regions relative

to each other or to a b-sheet.
– Quaternary structure – position in space of macromolecules (¼ elements) in a

supramolecular complex (¼ system). For example, single proteins in amultienzyme

complex.

When a salt is crystallized, a periodic structure forms, which is characterized by

a periodic arrangement of their elements. Erwin Schr€odinger (1944) called the

biological structure an aperiodic crystal. This means a highly organized structure,

the elements of which, are not simply repeated periodically. Sometimes one tries to

evaluate this structural organization as structural information. As we pointed out in
the previous Sect. 2.1.2, however, it is hard to quantify this parameter. Probably, the

structural information should be measured as the effort which is necessary, to

describe such a structure perfectly.

Consequently, the process of structure formation of biological systems, be it the

development of life, its reproduction, or simply the biosynthesis of a macromole-

cule, all are accompanied by reduction of entropy. This appeared to be contrary to

the second law of thermodynamics and has given rise to heated philosophical

discussions in the past. The second law of thermodynamics actually postulates

that in spontaneous processes occurring in isolated systems, the entropy strives

towards a maximum. Yet, neither an organism nor its environment, i.e., the earth as

a whole can be considered as an isolated system. The earth is constantly absorbing

energy from the sun and is emitting this energy again. That continuous flow of

energy maintains a permanent nonequilibrium state which manifests itself not only

in a direct way in photosynthesis with subsequent metabolism of heterotrophic

organisms, but also in the environment of life, for example, in flowing water, in

alternation of light and darkness, and in changes in temperature, humidity, etc.
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In fact, structures are also formed in inanimate nature under loss of entropy.

Basically, a distinction must be made between two kinds of structure formation

which at the same time explain the two ways of self-organization in living systems.

– Equilibrium structures, for example a salt crystal, formed spontaneously during

evaporation of a solvent.

– Nonequilibrium structures (or: dissipative structures), for example an arrange-

ment of cirrus clouds as the result of processes of air convection under special

meteorological conditions.

The genesis of life which is based on the prebiotic formation of a first bio-

macromolecule, and the subsequent evolution of all organisms, can be understood

as the result of complicated processes that occur far from equilibrium. In this context,

a major role is played by dissipative structures of the inanimate environment, such as

periodic temperature variations, tides, etc. Substantial importance has to be attributed

also to such nonequilibrium structures in the course of life itself. They are frequently

represented by time structures, such as for example the heart rate, or other kinds of

oscillations, which in some cases are associated with the so-called biological clock

(for further explanation see Sects. 3.1.4, 5.2.4, and 5.2.5).

Equilibrium structures, such as inorganic salt crystals with a very primitive

geometry, become very complex and variable in shape, when based on the sophis-

ticated pattern of the primary structure of bio-macromolecules rather than on the

relatively simple field of interaction of spherico-symmetric ions. The spontaneous

folding of proteins and their arrangement to supramolecular structures, such as

complex enzyme systems of even ribosomes, must be viewed from this aspect. Such

processes are also referred to as self-assembly. More specific aspects relating to the

formation of equilibrium and nonequilibrium structures will be given in subsequent

chapters of this textbook.

Further Reading

Eigen 1971, 1992; Meinhardt 2008, 2009; Kauffman 1993; Strait and Dewey 1996.

2.1.4 Distribution of Molecular Energy and Velocity at
Equilibrium

The Boltzmann equation of entropy (Eq. 2.4) as derived in Sect. 2.1.1, helps to

illustrate the second law of thermodynamics, according to which, isolated systems

spontaneously approach a state of maximum entropy. We demonstrated there that

one can express this also in the following way: at equilibrium isolated systems

reach a state of highest realization probability (maximum of W). Now, we will ask

the question: what are the mean properties of the molecules at this equilibrium

state? This is of fundamental importance for further considerations.
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It is possible to answer this question on the basis of statistical thermodynamics,

which helps to make predictions on the probability of energy distribution among the

elements of a system in thermodynamic equilibrium. It should, however, be

emphasized that a deterministic description of the properties of single particles

lies outside the limits of this discipline. Nevertheless, it will be seen that even a

statistical statement allows the drawing of important conclusions regarding reaction

rates, stability of molecules, and many others.

Let us imagine a space that contains gas molecules of uniform mass (m), which
at the beginning all have the same velocity (n), and consequently, the kinetic energy
(E) which can be calculated by the following equation:

E ¼ m

2
v2 (2.9)

This equality of the kinetic energy of all molecules, in fact, is a highly improba-

ble state. In this case, using Fig. 2.1, all molecules would belong to a single box, or a

single class of properties ni. Thus, according to Eq. 2.5: W ¼ n!/ni! ¼ 1. This

situation will change instantaneously. The molecules would exchange their energy

by elastic collisions with each other, and soon a great number of energy states

would be occupied. A simple mathematical example shows thatW, and according to

Eq. 2.4 also the entropy (S), will increase with a growing number of (m) of state
classes, provided the following relation applies:

Xm
i¼1

ni ¼ n

Because of the law of conservation of energy (first principle of thermodynam-

ics), the following condition must be satisfied at the same time:

Xm
i¼1

niEi ¼ const (2.10)

The energy of this system, therefore, can be distributed randomly among all of

its molecules. The total energy of the system, however, must always remain

constant.

Now, let us look for a state with maximum probability, this means, with a

maximum of entropy. Corresponding to the second principle of thermodynamics,

this is actually the thermodynamic equilibrium. Applied to our example the ques-

tion arises: How energy and, correspondingly, velocity will be distributed between

the n particles, after a sufficiently long period of time if the system is isolated? Even

under equilibrium conditions, of course, the energy of individual molecules will

change permanently, but nevertheless, the statistical mode of energy distribution, or

of the distribution of various degrees of molecular velocity at equilibrium becomes
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stationary, i.e., time independent (for a detailed description of various kinds of

stationary states see Sect. 3.1.4).

Considerations of this type lead to Maxwell’s equation of velocity distribution:

dnðvÞ
n0dv

¼ 4ffiffiffi
p
p m

2kT

� �3=2

v2 e
�mv2

2kT (2.11)

The left part of this equation contains a relation which expresses the relative

number (dn/n0) of those molecules which are related to a particular velocity interval

(dn). Its unit is s m�1. This is a function expressing the probability of the distribu-

tion of the velocity, where m is the mass of a molecule (not to be confused with the

numeral m in Eq. 2.5), and k is the Boltzmann constant. Multiplying in Eq. 2.11 the

denominator and numerator of the expression within the brackets as well as that in

the exponent with the Avogadro number (N ¼ 6.023·1023 mol�1) one introduces

molar, instead of molecular parameters:

M ¼ N � m (2.12)

and

R ¼ N � k (2.13)

(M – molar mass, R ¼ 8.314 J K�1 mol�1 gas constant)
In Fig. 2.3, as an example, the velocity distribution of molecules of oxygen is

depicted (M ¼ 0.032 kg mol�1). This curve is not symmetrical. The mean velocity

(weighted arithmetic mean value) in general will be higher than the maximum

value. The following relation applies:

vmax ¼
ffiffiffiffiffiffiffiffi
2kT

m

r
¼

ffiffiffiffiffiffiffiffiffi
2RT

M

r
; �v ¼

ffiffiffiffiffiffiffiffi
8kT

pm

r
¼

ffiffiffiffiffiffiffiffiffi
8RT

pM

r
(2.14)

Fig. 2.3 Velocity

distribution of O2 molecules

at 37�C corresponding to

Eq. 2.11

18 2 Molecular Structure of Biological Systems

http://dx.doi.org/3.1.4#10.1007/978-3-642-25212-3

